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West and Harrison (1989)) and nonlinear models (see



For the model selection problem in general, one can replace (1.2) and the accompanying

descriptions of distributions for various quantities by



density to inferential use, adapting the philosophy advocated in Geisser (1971). The imagined

replication makes y and Z comparable; in fact, exchangeable a priori. Moreover, the parameters

in the model play a minimal role under replication. It seems clear that good models, among

those under consideration, should make predictions close to what has been observed for an

identical experiment. The criteria below are de�ned with this motivation.

For a given model m, consider

L2
m = E[(Z � y)0(Z � y)] ;

where the expectation is taken with respect to the PDRE fm. The measure L2
m has the decom-

position

L2
m =

nX
i=1

n
[E(Zi)� yi]

2 + V ar(Zi)
o
;

as a sum of two components, one involving the means of the predictive distribution, and the

other involving the variances. Thus a model's performance is measured by a combination of

how close its predictions are to the observed data and the variability of the predictions. Good

models will have small values of L2
m. It is often more convenient to use the measure

Lm =
q
L2
m

since it is a distance on the response axis, measured in the same units as the response variable.

We refer to Lm as the L criterion.

To de�ne the second criterion, consider

M�

m = fm(y) :

This is the PDRE under model m, evaluated at the observed response y. A good model will

have a large value of M�

m. A ratio of M�

m's for two di�erent models is an instance of what

Aitkin (1991) calls the posterior Bayes factor. Again, to facilitate interpretation, let

Mm = (M�

m)
�1=n

which is in the units of the response variable, and small values of it indicate good models. We

refer to Mm as the M criterion.

The third criterion we introduce for model selection is the Kullback-Leibler (KL) divergence

between two predictive densities. Suppose f1 and f2 are two densities with respect to Lebesgue

measure. Then, the KL divergence between f1 and f2 is de�ned by

K(f1; f2) =

Z
log [f1(x)=f2(x)] f1(x) dx :
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In general, K(f1; f2) 6= K(f2; f1), and K(a; b) � 0 with equality occurring only if a = b. The

KL divergence has been used in the literature for a wide variety of statistical problems, and in

connection with the Bayesian predictive distribution. For example, with its use Aitchison (1975)

shows that the predictive distribution best approximates the sampling distribution, Johnson

and Geisser (1983) detect in
uential observations in linear regression, and McCulloch (1989)

assesses the in
uence of model assumptions. Bhattacharjee and Dunsmore (1991) use the KL

directed divergence to select variables in logistic regression.

For our purposes, suppose m0 is a �xed model inM from which we measure other models.

In variable selection, for instance, a natural choice for m0 might be the full model (1.1) with

all of the k predictors. Using PDRE's of m0 and m, we de�ne

Km = K(m0;m) +K(m;mK130000sl310

0



2 Prior Distributions



with c � 0 quantifying, in multiples of the present experiment, the importance one wishes

to attach to the prior guess �0. Thus under model m, Tm is a scalar multiple of the Fisher

information matrix for �(m). Zellner's g-priors (Zellner, 1986) also have this structure for the

precision matrix. It has the advantage of leading to analytically tractable and computationally

feasible solutions.

Now, we take �(m)j� to be normally distributed, i.e.,

�(m)j� � Nokm(�
(m); � Tm) : (2.5)

As a result of focusing on the observables, only a few easily interpreted quantities are needed

to specify the prior. In particular, the prediction �0 is turned into a prior for �(m)j� for each

m in an automated fashion.

Finally, the prior distribution for � is taken to be a gamma distribution with parameters

(�0=2; 
0=2), i.e., with density

�(�) d� / � �0=2�1 exp f�
0�=2g d� : (2.6)

For a �xed model m, (2.5) and (2.6) result in the conjugate normal-gamma prior.

With this prior and the likelihood implied by (1.2) for each m, a straightforward derivation

yields

Z � Sn
�
n+ �0; �m; s

2
m(I + (1� 
)Pm)

�
; (2.7)

where 
 = c=(1 + c), �m = Pm (
�0 + (1� 
)y), s2m = (n + �0)
�1(qm + 
pm + 
0), qm =

y0(I � Pm)y, and pm = (y � �0)
0Pm(y � �0). The PDRE in (2.2) for noninformative priors can

be obtained from (2.7) by formally setting 
 = 0, �0 = �km, and 
0 = 0. Moreover if Xm has

rank rm < km, replace km by rm in (2.7) above. For brevity, any relevant expressions are given

only for the case of conjugate priors in the remainder of this article.

The L criterion under model m is now given by

Lm = f(1 + �m)qm + 
(
 + �m)pm + �m
0g
1=2 ; (2.8)

where �m = n+(1�
)km
n+�0�2

. We see that L2
m above is a linear function of qm and pm. The quantity

qm is the squared length of the projection of the data onto the error space of model m, i.e., the

error sum of squares for model m. The quantity pm represents a penalty for a bad prior guess

at Y . It is the squared length of the projection of the \guessing error" onto the model's column

space. Under reference priors, (2.8) reduces to Lm =
�
2(n� 1)(n� km � 2)�1qm

�1=2
. In this

case, Lm is similar to the root mean square criterion.

To calculate the calibration number SL, one can sample from the marginal distribution

Y � Sn
�
�0; �m� ; 
0�0

�1(I + 
�1(1� 
)Pm�)
�
;
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and calculate Lm� with each sample. (Here m� is the model that minimizes Lm.) The standard

deviations of these values provides a Monte Carlo approximation to SL. If one is using the ref-

erence priors in (2.1), however, it is well known that the marginal distribution of Y is improper.

In this case, one could sample from the conditional distribution Y j� � Non(0; �(I�Pm�)) with

� replaced by ~� , the mode of the posterior distribution of � usingm�. The standard deviation of

the resulting samples of Lm� can be viewed as an approximation to DL = [V ar(Lm� j� = ~�)]1=2.

For large n one can obtain the analytic approximation

DL �
~��1



where

aM =
2



number SL. Under the improper reference priors, however, one is not guaranteed such auto-

matic protection and hence must be careful to not include in M any model that can yield a



3.2 Transformation Selection

In linear regression, transformations of the predictor variables can often lead to more ac-

curate predictions and a model that better �ts the data. Box and Cox (1964) discuss transfor-

mations with an emphasis on transforming the response variable. They also mention brie
y a

possible Bayesian approach. It appears, however, that the literature on Bayesian transformation

methods is sparse at best.

Here, we show how two of the predictive criteria can be used to select a speci�c member of

a suitably chosen parametric transformation family. The K criterion as de�ned in this article is

not applicable to this problem. Consider equation (1.2) where a single model m 2 M



an intercept and the Box-Cox transformation on x. Again, to denote the dependence of the

criteria on �, we write Mm � M(�) and Lm � L(�). Under the noninformative prior (2.1),

M(�) and L(�) are equivalent and we get the minimizer �̂ = �1:325, with L(�̂) = 0:160

and M(�̂) = 0:099. Results for the coe�cient of determination (R2), residual sums of squares

(RSS), and the criterion functions are given for three regression models in Table 2.

Table 2 - Comparison of Models, Vapor Pressure Data

Model R2 RSS L(�)MTf
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4 Discussion

The minimizations of the criterion functions L andM for the transformation problems were

carried out numerically since analytic methods are not readily available. The computations were

greatly facilitated by LISP-STAT (Tierney, 1990), which made it possible to carry out the calcu-

lations with relatively few lines of code. The functions NEWTONMAX and NELMEADMAX

were used with good success. For the examples of this paper, the calculations proceeded quite

fast on a SUN SPARC station. Starting values of � = (1; : : : ; 1)0 worked well. Other starting

values were also used.

An important issue in any model selection procedure is that of model assumptions. It

is well known that violations of the same can result in the addition or omission of variables

in a variable selection procedure. AIC and BIC, for instance, are not robust to outliers or

in
uential points. The criteria proposed in this article likely su�er from the same problems.

Simultaneously checking and selecting models is di�cult, and there are no de�nitive solutions

to this problem. Ho aluesselection



given by

Mm = �1=2
 

�(n+�02 )

�(n+ �0=2)
(2� 
)km=2

!1=n

a1=2m

�
1 +

bm
am

�1+ �0

2n

;

where am = qm+
pm+
0 and bm = qm+

2

2�
 pm. Again, both am and bm are linear combinations

of the residual sum of squares and the \guessing error".

An exact expression for the K criterion is not available since the necessary integral is not

tractable. However, for large n, we can approximate the distribution in (2.7) by a

Non

�
�m;

�
n+�0

n+�0�2

�
�1

s�2m (I + (1� 
)Pm)
�1

�
distribution. Taking m0 to be the full model,

de�ne

v =
(n+ �m)(n+ �m0

� 2)

(n+ �m0
)(n+ �m � 2)

;

where �m = �m0
= �0 for the normal-gamma priors, and �m = �km, �m0

= �km0
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nonio(2))Tj

0 13.9995 TD

(m)Tj

/T13 1 T427c5D

(and)[(e995 TD0Tj

/T1.�ne364998 13.9With16)Tj

/T8 1 Tf

3  1 9 1 Tf56.9995 TD

(n)T1 1 Tf

919 0 TD

(�)Tj

/T7 1 Tf2Tf
Tf
TD

(+)Tj

/T11 1 Tf

9140 TD

(�)Tj

/T8 1 Tf

40 13.9995 TD

(m)Tj

/T9 1 Tf

62 9.0005 TD

(0)Tj

/T9 1 Tf

8

62 9 -23.0005 TD

(�)Tj

/T13 1 2

62 9 -23.0 TD

(2))Tj

/T11 1 Tf

121.0002 - 269.148 541.71.64998BI

/W 1


7 1

471.51

/IM true

ID �

EI

Q

BT

0.12 0 0 -0.12 269.16 531.3 Tm

(()Tj

/T11

7 6 4j

2 9 m95 TD

(m)T/T8 1 Tf
44
55.0001 0 TDTD

(�

/T13 1 Tf
27.9995 TD

(m)Tj

/T13 0 49005 TD

(0)Tj

/T9 1 Tf


639 8

62 9 -23.0005 TD
()Tj

/T11
540

62 9 -23.0�m0 k)

�+�m02)

(



[2] Aitchison, J., and Dunsmore, I. R. (1975), Statistical Prediction Analysis, New York :

Cambridge University Press.

[3] Aitkin, M. (1991), \Posterior Bayes Factors," (with discussion) , Journal of the Royal

Statistical Society, Ser. B, 53, 111-142.

[4] Akaike, H. (1973), \Information Theory and an Extension of the Maximum likelihood

Principle," International Symposium on Information Theory, eds. B. N. Petrov and F.

Csaki, pp.267-281. Budapest: Akademia Kiado.

[5] Bates, D. M., and Watts, D. G. (1988) Nonlinear Regression Analysis and its Applica-

tions, New York : John Wiley.

[6] Bernardo, J. M. (1985), Comment on \Outliers and In
uential Observations in Linear

Models", (with discussion), in Bayesian Statistics 2, eds. Bernardo, J. M., DeGroot, M.

H., Lindley, D. V., and Smith, A. F. M., Amsterdam : North-Holland, p.492.

[7] Bhattacharjee, S. K., and Dunsmore, I. R. (1991) \The In
uence of Variables in Logistic

Regression", Biometrika, 78, 851-856.

[8] Box, G. E. P., and Cox, D. R. (1964), \The Analysis of Transformations" (with discus-

sion), Journal of the Royal Statistical Society, Ser. B, 26, 211-252.

[9] Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis : Forecasting and

Control, (2nd Ed.), San Francisco: Holden-Day.

[10] Box, G. E. P., and Kanemasu, H. (1973), \Posterior Probabilities of Candidate Models

in Model Discrimination," Technical Report 322, University of Wisconsin.

[11] Box, G.E. P., and Meyer, D. R. (1986), \Dispersion E�ects From Fractional Designs,"

Technometrics, 28, 19-27.

[12] Box, G. E. P., and Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis. Read-

ing, MA: Addison-Wesley.

[13] Box, G. E. P. , and Tidwell, P. W. (1962), \Transformation of the Independent Vari-

ables," Technometrics, 4, 531-550.

[14] Carroll, R. J., and Ruppert, D. (1988), Transformation and Weighting in Regression,

London : Chapman and Hall.

[15] Christensen, R. (1990), Log-Linear Models, New York : Springer-Verlag.

[16] Clayton, M. K., Geisser, S., and Jennings, D. E. (1986), \A comparison of Several Model

Selection Procedures," in Studies in Bayesian Econometrics and Statistics, eds. P. K.

Goel and A. Zellner, New York : Elsevier.

16



[17] Cook, R.



[32] Mitchell, T. J., and Beauchamp, J. J. (1988), \Bayesian Variable Selection in Linear

Regression," (with discussion), Journal of the American Statistical Association , 83,

1023-1036.

[33] Pettit, L. I., and Smith, A. F. M. (1985), \Outliers and In
uential Observations in Linear

Models", (with discussion), in Bayesian Statistics 2, eds. Bernardo, J. M., DeGroot, M.

H., Lindley, D. V., and Smith, A. F. M., Amsterdam : North-Holland, p.492.

[34] San Martini, A., and Spezzaferri, F. (1984), \A Predictive Model Selection Criterion,"

Journal of the Royal Society, Ser. B, 46, 296-303.

[35] San Martini, A., and Spezzaferri, F. (1986) \Selection of Variables in Multiple Regression

for Prediction and Control, " Statistica, 118-127.

[36] Schwarz, G. (1978), \Estimating the Dimension of a Model", Annals of Statistics, 6,

461-464.

[37] Smith, A. F. M., and Spiegelhalter, D. J. (1980), \Bayes Factors and Choice Criteria for

Linear Models," Journal of the Royal Statistical Society, Ser. B., 42, 213-220.

[38] Spiegelhalter, D. J., and Smith, A. F. M. (1982), \Bayes Factors for Linear and Log-

linear Models with Vague Prior Information", Journal of the Royal Statistical Society,

Ser. B., 44, 377-387.

[39] Taguchi, G., and Wu, Y. (1980), Introduction to O�-Line Quality Control, Nagoya,

Japan : Central Japan Quality Control Association.

[40] Tierney, L. (1990), Lisp-Stat : An Object-Oriented Environment for Statistical Comput-

ing and Dynamic Graphics , New York: John Wiley.

[41] Tukey, J. W. (1977), Exploratory Data Analysis, Reading, MA: Addison-Wesley.neyA y(1982i000(:)]8.0001 0 TBayesi 0 y


