Predictive Model Selection



West and Harrison (1989)) and nonlinear models (see



For the model selection problem in general, one can replace (1.2) and the accompan ing

descriptions of distributions for various quantities b



densit to inferential use, adapting the philosoph advocated in Geisser (19i1). The imagined
replication makes y and Z comparable; in fact, exchangeable a priori.  oreover, the parameters
in the model pla a minimal role under replication. It seems clear that good models, among
those under consideration, should make predictions close to what has been observed for an

identical experiment. The criteria below are defined with this motivation.

For a given model m, consider

Ly, = Bl(Z —y)(Z - y)] ,

m

where the expectation is taken with respect to the PDRE f,,,. The measure L2, has the decom-

position
n

12, =3 {[B(Z) -y + Ver(2)}
=1

as a sum of two components, one involving the means of the predictive distribution, and the
other involving the variances. Thus a model’s performance is measured b a combination of
how close its predictions are to the observed data and the variabilit of the predictions. Good

models will have small values of L2 . Tt is often more convenient to use the measure

Lo =/I2

since it is a distance on the response axis, measured in the same units as the response variable.

We refer to L,, as the L criterion.

To define the second criterion, consider

M;vkm = fm(y) .

This is the PDRE under model m, evaluated at the observed response y. good model will
have a large value of M}, . ratio of M ’s for two different models is an instance of what

itkin (1991) calls the gosterior Bayes factor. gain, to facilitate interpretation, let
My, = (M) /"

which is in the units of the response variable, and small values of it indicate good models. We

refer to M, as the M criterion.

The third criterion we introduce for model selection is the Kullback-Leibler (KL) divergence
between two predictive densities. Suppose f; and fo are two densities with respect to Lebesgue

measure. Then, the KL divergence between f; and f5 is defined b

L(fr, fr) = / log [f1(2)/ ()] f1(x) da .



In general, da(f1, fo) # da(f2, f1), and da(e,b) > 0 with equalit occurring onl if @ = b. The
KL divergence has been used in the literature for a wide variet of statistical problems, and in
connection with the Ba esian predictive distribution. For example, with its use itchison (19ii5)
shows that the predictive distribution best approximates the sampling distribution, Johnson
and Geisser (1983) detect influential observations in linear regression, and  cCulloch (1989)
assesses the influence of model assumptions. Bhattacharjee and Dunsmore (1991) use the KL

directed divergence to select variables in logistic regression.

For our purposes, suppose my is a fixed model in M from which we measure other models.
In variable selection, for instance, a natural choice for mg might be the full model (1.1) with
all of the k predictors. Using PDRE’s of mg and m, we define

di,, = dim(m0, M) + (M, M130000310



2 Prior Distributions



with ¢ > 0 quantif ing, in multiples of the present experiment, the importance one wishes
to attach to the prior guess n9. Thus under model m, T}, is a scalar multiple of the Fisher
information matrix for 3(™). Zellner’s g-priors (Zellner, 1986) also have this structure for the
precision matrix. It has the advantage of leading to anal ticall tractable and computationall

feasible solutions.

Now, we take 5(™)|7 to be normall distributed, i.e.,
B~ Noy, (1™, 7 Tp) (2.5)

s a result of focusing on the observables, onl a few easil interpreted quantities are needed
to specif the prior. In particular, the prediction 79 is turned into a prior for ﬂ(m)h for each
m in an automated fashion.

Finall , the prior distribution for 7 is taken to be a gamma distribution with parameters
(8/2,70/2), i.e., with densit

w(r) dr o< 727" exp {—~o7/2} dr . (2.6)
For a fixed model m, (2.5) and (2.6) result in the conjugate normal-gamma prior.

With this prior and the likelihood implied b (1.2) for each m, a straightforward derivation
ields
Z ~ Su (1 + 80,1, ST (I + (1 =7)Pon)) (2.)

where v = ¢/(1 +¢), hm = P (ym0+ (1 —=7)y), 52, = (n + &) (gm + Pm + 70), @m =

y'(I — Pp)y, and pr = (y — 1m0)' P (y — o). The PDRE in (2.2) for noninformative priors can
be obtained from (2.) b formall setting v =0, & = —k;,, and 79 = 0.  oreover if X, has
rank r,, < kp,, replace k,, b 7, in (2.f) above. For brevit , an relevant expressions are given

onl for the case of conjugate priors in the remainder of this article.

The L criterion under model m is now given b

L = {(1 4+ An)gm + 7 + An)pm + Am0} % (2.8)

nt(1—y)km
n+dp—2

¢m is the squared length of the projection of the data onto the error space of model m, i.e., the

where A\, = . We see that L2, above is a linear function of ¢,,, and p,,. The quantit

error sum of squares for model m. The quantit p,, represents a penalt for a bad prior guess
at Y. It is the squared length of the projection of the “guessing error” onto the model’s column
space. Under reference priors, (2.8) reduces to L,, = (2(n —1)(n — ky, — 2)_1qm)1/2. In this

case, L,, is similar to the root mean square criterion.

To calculate the calibration number Sz, one can sample from the marginal distribution

Y ~ 5, (éOanm*fYOéOil(I + ’771(1 - V)Pm*)) ’

=1



and calculate L,,» with each sample. (Here m* is the model that minimizes L,,.) The standard
deviations of these values provides a onte Carlo approximation to Sz. If one is using the ref-
erence priors in (2.1), however, it is well known that the marginal distribution of Y is improper.
In this case, one could sample from the conditional distribution Y|r ~ No,(0,7(I — P,,~)) with
T replaced b 7, the mode of the posterior distribution of 7 using m*. The standard deviation of
the resulting samples of L,,+ can be viewed as an approximation to My = [Var(L,,-|t = 7)]'/2.

For large n one can obtain the anal tic approximation

7~_71

.L%



where

2]



number Sz. Under the improper reference priors, however, one is not guaranteed such auto-

matic protection and hence must be careful to not include in M an model that can ield a



3.2 Transformation Selection

In linear regression, transformations of the predictor variables can often lead to more ac-
curate predictions and a model that better fits the data. Box and Cox (1964) discuss transfor-
mations with an emphasis on transforming the response variable. The also mention briefl a
possible Ba esian approach. It appears, however, that the literature on Ba esian transformation
methods is sparse at best.

Here, we show how two of the predictive criteria can be used to select a specific member of
a suitabl chosen parametric transformation famil . The da criterion as defined in this article is

not applicable to this problem. Consider equation (1.2) where a single model m € M



an intercept and the Box-Cox transformation on z. gain, to denote the dependence of the
criteria on «, we write M,, = M(«) and L,, = L(«). Under the noninformative prior (2.1),
M(«) and L(«) are equivalent and we get the minimizer & = —1.325, with L(&) = 0.160
and M (&) = 0.099. Results for the coefficient of determination (R?), residual sums of squares

(RSS), and the criterion functions are given for three regression models in Table 2.

Table 2 - Comparison of odels, Vapor Pressure Data

odel R? RSS  L(a)MTf~Bn~TByMTTByoTeqeTHT f~THlye famat]
=€






4 Discussion

The minimizations of the criterion functions L and M for the transformation problems were
carried out numericall since anal tic methods are not readil available. The computations were
greatl facilitated b LISP-ST T (Tierne , 1990), which made it possible to carr out the calcu-
lations with relativel few lines of code. The functions NEWTON X and NEL E D X
were used with good success. For the examples of this paper, the calculations proceeded quite
fast on a SUN SP RC station. Starting values of a = (1,...,1)" worked well. Other starting

values were also used.

n important issue in an model selection procedure is that of model assumptions. It
is well known that violations of the same can result in the addition or omission of variables
in a variable selection procedure. IC and BIC, for instance, are not robust to outliers or
influential points. The criteria proposed in this article likel suffer from the same problems.
Simultaneousl checking and selecting models is difficult, and there are no definitive solutions

to this problem. Ho



given b

1/2 () o /2 v 1/2 b \ T
My =7 (m (2-7) ) ) (1+%> ,

where &,, = ¢ +Ypm+0 and b, = qm—i-%pm. gain, both &, and b, are linear combinations

of the residual sum of squares and the “guessing error”.

n exact expression for the da criterion is not available since the necessar integral is not

tractable.  However, for large n, we can approximate the distribution in (2.ii)) b a
-1
Noy, <77m,( n+6 ) s+ (1 —v)Pm)_1> distribution. Taking mg to be the full model,

n+dbp—2
define

(0 + &) (0 + g — 2)

T ()t 8 —2)
where &, = &,, = & for the normal-gamma priors, and &, = —k,, &,, = —kn, under
noni®,p))Tjf013.9995TDA(m)Tjfl /T131T42fEc5Dfl(and)[(€995TDOTjfl /T1.fine36499813.9With16)Tjk/T81TfA.
o
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