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Abstract

Often when comparing the survival rates of individuals given either of two treat-

ments the analysis stops with a test of the hypothesis of no treatment di�erence and

perhaps a plot of the two survival functions. The hypothesis test is usually a com-

parison of the two survival curves over the entire observational period. An alternative

approach to this problem is to provide an investigator with a con�dence region for

the set of times at which the survival rates of the two treatments are the same. We

discuss how such con�dence regions can be constructed in three situations. First, we

construct con�dence regions when there are no additional factors that need be adjusted

for. Second, based on a proportional hazards model, we show how to construct the

desired con�dence regions adjusted for explanatory covariates that are not confounded

with the two treatments. Lastly, we extended these results to allow for explanatory

covariates that are confounded with treatment. These approaches are illustrated on

retrospective data gathered to compare the survival rates of allogeneic and autologous

bone marrow transplants for acute leukemia.

1 Introduction

A common problem arising in biomedical applications is the comparison of the survival
functions or hazard rates of two treatments. Most standard statistical tests are based on
comparing the survival curves or equivalently the hazard functions over a given time period.
The time period considered is typically the period from initiation of the treatment to some
point in time where observation of the patients ceases. This comparison may be made by
the log rank test (cf. Andersen et al. 1993), for example, when there are no other covariates
that may inuence survival. When there are other covariates that may a�ect outcome in
addition to the treatments under consideration, testing of treatment e�ects is carried out
by some type of regression technique. Tests may be based on any number of parametric or
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semi-parametric models,



o� between early high mortality with allogeneic transplants and lower reoccurrence rates. To
help in the decision between these two competing treatment modalities a con�dence region
for the times at which the survival probabilities of the two treatments are the same is of
interest. Also, since autologous transplants are easier to perform as no donor is needed, a
con�dence region for those times where the survival probability for a autologous transplant
patient is not smaller than the corresponding survival probability for an allogeneic transplant
patient is also of interest.

2 Con�dence Regions When There Are No Other Ex-

planatory Covariatesno



S1(t) = S2(t) as ft0 : �z�=2 � �̂(t0)=
q
V ar[�̂(t0)] � z�=2g. Note that the con�dence region

can also be written as ft0 : �̂(t0) � z�=2
q
V ar[�̂(t0)] � 0 � �̂(t0) + z�=2

q
V ar[�̂(t0)]g, so
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3 Adjustment For Covariates Not Confounded With

Outcome

In many experiments there are other risk factors that need to be adjusted for prior to making
the main comparison between the two treatments. Let Z = (Z1; � � � ; Zp) be a vector of �xed
time covariates that inuence survival. In this section we assume that there is no signi�cant
interaction between the comparison of interest and any of these covariates.

The con�dence region, adjusted for these other covariates, is based on the proportional
hazards model (Cox (1972)). Here we �t a proportional hazards model for the explanatory
covariates stratifying on the treatment of interest. That is we �t the model

�(tjZ;Treatment) =

(
�10(t) expf�

T
Zg; for treatment 1;

�20(t) expf�
T
Zg; for treatment 2:

(3.1)

Let �̂ and I(�̂) be the partial maximum likelihood estimator and the observed information
for this model. An estimator of the baseline cumulative hazard rate for treatment j, j = 1; 2
is given by Breslow's (1975) estimator

�̂j0(t) =
Z t

0

dNj(u)

S
(0)
j (�̂; u)

; where (3.2)

S(0)
j (�̂; u) =

nX
i=1

Yij(u) expf�
T
Zig (3.3)

with Yij(u) the indicator of whether the ith individual is at risk at time u and is in the jth
group.

For an individual with a covariate vector Z0, the two treatments will have the same
survival rate at time t0 if �(tjZ0;Treatment 1) = �(tjZ0;Treatment 2), which from (3.1)
is equivalent to having �10(t0
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Since at t0 an � level test of the equality of the two survival functions is accepted when
�̂(t0)=[V ar(�̂(t0))]

1=2



To construct the con�dence region where the survival rates are the same for the two
treatments a strati�ed proportional hazards model is used. We �t the model

�(tjZ;Treatment) =

(
�10(t) expf

T
1 Z1 + �TZ2g; for treatment 1;

�20(t) expf
T
2 Z1 + �TZ2g; for treatment 2:

(4.1)

Estimates for � = (�T1 ; 
T
1 ; 

T
2 ) are found by �tting a Cox model, strati�ed on treat-

ment group to the data with an augmented covariate vector ZT = (ZT
2 ;Z

T
1 I[Treatment =

1];ZT
1 I[Treatment = 2]). For a given set of confounding factors, Z10, the two treatments

will have the same survival rate at time t0 if

�(t0jZ10) = �20(t0) expf
T
2 Z10g � �10(t0) expf

T
1 Z10g (4.2)

is equal to zero. The estimator of �(t0jZ10) given by

�̂(t0jZ10) = �̂20(t0) expf̂
T
2 Z10g � �̂10(t0) expf̂

T
1 Z10g

follows from the �tted Cox model with �j0() estimated using Breslow's estimator (3.2).

An estimator of the asymptotic variance of �̂(t0jZ10) can be shown to be

V ar(�̂(t0jZ10
t

t



(dichotomized as � 1 yr or > 1 yr) and two interaction covariates. The interaction covariates
are Z11 = 1 if age > 30 and allo transplant and Z12 = 1 if age > 30 and auto transplant.
Figure 4a and 4b show the standardized di�erence between the cumulative hazard rates for
patients under 30 and o

patien



di�erence of the two Kaplan-Meier estimators of the survival function. We �nd
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