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1. Introduction 

In functional magnetic resonance imaging (fMRI), the question of whether a region of 

the brain is being “activated” or statistically significantly associated with a pre defined 

reference wave form characterizing the presentation of an experimental “stimulus” 

condition is important.  Typically, it is determined whether individual voxels are active 

through a multiple regression and thresholding ([1], [2], [3]) with statements made about 

clusters of voxels. Standard individual voxel activation statistics are computed via 

multiple regression.  Activation “t-statistic maps” which are a map generated from a t-

statistic derived from a hypothesis test performed in each voxel are computed. A 

“thresholded” or map-wise critical value is objectively determined with methods that 

account for the multiple comparisons problem such as Bonferroni adjustment for 

controlling the family-wise error rate or the Benjamini-Hochberg adjustment for controlling 

the false-discovery error rate [3].  Regions of interest (ROIs) are often formed from the 

thresholded maps of a group of subjects by using the “and’’ in addition to the “or’’ 

operation on a voxel-wise basis after coregistration. The voxels in the ROIs can be 

analyzed for joint activation [4, 5]. It is extremely important to determine appropriate 

thresholds to determine clusters of voxels to comprise ROIs [6]. 

 

 



2. Regression Analysis 

The multivariate fMRI regression model ([7], [8]) is a generalization of the univariate 

regression model from a single voxel to p voxels. The model is Y = Xβ + E, where Y is an 

n×p matrix of observed voxel time courses with the jth column Yj being the observed time 

series in the jth voxel, X is an n×(q+1) design matrix that contains any regressors such as 



where W = (X'X)-1, Wqq is its last diagonal element, and Sjj 



3. Principal component analysis  

Principal component analysis (PCA) is a statistical method to determine components 



(S-λ1Ip)w1=0 

and since w1≠0, there can only be a solution if 

|S-λ1Ip|=0. 

It is apparent that λ1 must be a latent root of S and w1 is a normalized latent vector of S. 

There are p such latent roots that satisfy the equation. The largest is selected. The other 

rows of W are found in a similar fashion. In practice, PCA is used as a dimension 

reduction method. Since a small number of components account for the majority of the 

variability in the data, they are retained and the others discarded. 

PCA can be applied to a set of voxels from an ROI and extract common information. 



In a block design it is often dominated 

by a periodic trend that corresponds to 

the alternation of the tasks [26].  The first 

principal component within an activated 

region is very similar across subjects; the 

other components vary from subject to 

subject (data not shown). The second 

component appears to be related to the 

trend or drift in the ROI. Often the 

temporal trends are non-linear (usually curvilinear polynomials of order 2 and higher).   

The third component contains some of the high frequency noise that is still present in the 

averaged response, but not in the first 

principal component. The higher order 

components are difficult to interpret in 

most fMRI studies (Figure 3), although 

they can be used to differentiate 

subgroups of subjects. By using them in 

a subsequent regression analysis they 

may serve to identify the differences 

among the group response to the task. 

For example, in Figure 4 the two nicotine 

usage subgroups have very similar first 

principal components, but quite different second principal components.  Each ROI often 

has its own temporal trend which sometimes becomes the second principal component. 

Visually, the rest of the components for each of the ROIs will often have a similar 

relationship to the underlying boxcar task (Figure 5).   

−
10

0
−

50
0

50
10

0
va

vg

0 100 200 300



 

Software for PCA is contained in 

nearly all data analysis packages: SAS, 

Stata, SPSS, R, Matlab, Statistica, etc.   

PCA determines orthogonal components 

or sources of variation.  Other methods 

are in use to extract sources such as 

factor analysis, independent component 

analysis and Bayesian source separation 

([11], [12], [14]).    

 Historically, PCA was first used in 

PET [15] to identify connections between 

different regions of the brain.  With PET, unlike fMRI, the time series were very short; 

however, the PCA was still applied to all the voxels (104 – 105) making a very large 

covariance matrix with few meaningful 

components.  Friston [15] used a method 

called recursive PCA to limit the number 

of eigenvectors describing the data.  

While fMRI time series usually have 20 to 

60 times the length of the corresponding 

PET time series, there still are many 

more voxels than time points.  False 

Discovery Rate (FDR) methods would be 

used now ([3], [4], [5]) to identify the 

functionally correlated voxels with a 

controlled expected false positive rate. The advantage of this approach is that it is an 
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exploratory method to look for relationships; the disadvantage is that it is difficult to deal 

with the dimensionality of the problem on a voxel-wise basis. 

 Another approach to identifying components of the neural networks, especially in 

the case where there is no underlying task present or when the task is very complex and 

hard to differentiate from noise is termed Independent Component Analysis (ICA) ([26], 

[27])  which is discussed in several of the other recent papers.  

 

4. Factor analysis  

Factor analysis is related to PCA; however, while the aim in PCA is primarily to 

reduce the dimensionality of a single sample of the data, the aim in factor analysis is 

primarily model driven.  Factor analysis assumes there is a set of underlying or “latent 

variables” that are related to the observed data through 

Y = F Λ + E, 

where Y without loss of generality is the standardized observed data with columns 

centered about their mean and divided by their standard deviation, Λ is a matrix of 

common coefficients or factor loadings, F is the set of specific factors assumed to have 

mean zero and variance one while E is the portion of Y not due to the common factors F.   

In the case where F is a well specified model, the process is called confirmatory 

factor analysis.  In the case where F is less well known, the process is called exploratory 

factor analysis. Exploratory factor analysis was used in Lawrence et al. [13] to explore 

the relationship of 29 ROIs that showed a difference in activation between a control task 

and an RVIP task.  The difference in mean activation level between the task and the 

control for each of the regions and the RVIP task performance were used in an 

exploratory factor analysis based on the data from 25 volunteers. Three factors were 

identified; the first factor was composed of 15 ROIs that had a positive loading on the 



response to the RVIP task, the second factor was composed of 9 ROIs that had a 

negative loading on the response to the RVIP task and the third factor included ROIs that 

did not load on the response to the RVIP task.  The third factor consisted of mainly 

cerebellar regions.  The authors used the factor analysis to conclude that there were two 

networks – one which supported sustained attention and one which either was not 

needed for sustained attention and had resources that could be used by the first network 

or which by being suppressed prevented distractions or attention interference. 

Typically reporting the results of exploratory factor analysis involves subjectively 

identifying or characterizing the factors.  For this reason, confirmatory factor analysis with 

a well-defined, a priori model is often preferred to exploratory factor analysis.  The next 

section, which discusses structural equation modeling, will present an example where the 

a priori model is determined by anatomic and lesion studies. 

 

5. Structural Equation Modeling 

In fMRI, the question of whether two or more regions of the brain are associated with 

each other is important.  For fMRI connectivity is defined in terms of the time series 

observed in the individual voxels or in a summary statistic, such as the mean, applied to 

the ROI. 

Functional connectivity is the temporal correlations between spatially remote 

neurophysiological events [15].  It is a statement about the observed correlations, often 

with the task.  Effective connectivity is influence one neuronal system exerts over 

another [16].  Effective connectivity analysis allows testing of whether a neural network 

is modulated by changes in other networks or changes in the experimental conditions 

(such as doses of a drug).   Changes in the connection strength between regions in the 

brain can occur independently of changes in response magnitude and extent in the 

region. Consequently, changes in performance can be ascribed to changes in the region 



or changes in how the regions inter-communicate.  A region’s connectivity changes may 

precede the activity changes, follow the activity changes or not change at all.  Any of 

these conclusions help understand the process of changes in the network.    Structural 

equation modeling (SEM) is the technique used to estimate the strength of the paths 

between different brain regions. McIntosh and Gonzales-Lima ([17],[18]) first used SEM 

to study the connections in the rat visual cortex.  In later work, Honey [19], used SEM to 

examine the effects of verbal working memory load on inter-cortical connectivity.  Buchel 

and Friston [20], extended the SEM method to examine modulation of the connectivity 

between the visual cortex and the posterior parietal by the level of activity of the 

prefrontal cortex; They used interactions and non-linear terms in the SEM model.  Couill 

and Buchel [21] extended this idea to the modulation of connectivity by external factors, 

namely, the usage of different doses of clonidine, a D2 agonist.   

SEM modeling starts with an a priori



The model for the path coefficients is based on animal studies and human lesion 

studies. 

For example, we can determine effective connectivity changes in regions activated 

by the RVIP task [12] with real and placebo nicotine patches two hours after application.  

The first step is to identify the regions that should be involved in the sustained 

attention/working memory RVIP task.  The model for the expected connections is based 

on Kolb and Whishaw’s [24] discussion of regions involved in sustained attention.  The 

anatomic connections expected are displayed in Figure 6.  Data was processed with 

AFNI 2.2 after performing motion 

correction. Functional ROIs were defined 

in standard stereotaxic space by regions 

differentially activated in the non-

smokers [13].  The path coefficients were 

estimated, separately for each condition, 

as a system of regression equations 

using SAS 8.2 proc callis.  Table 1 

displays the results for some of the 

regions [25].  Statistical comparisons of 

the modulation of the individual 

connections by acute nicotine deprivation were made using Wald tests -- t-tests using 

the difference in the path coefficients divided by the standard error of the difference. 

Most notable are (1) the strengthening of the path coefficients between the SMA and the 

anterior cingulate and between the right posterior parietal to the visual cortex  which 

might suggest increases in attention to external processes when on the placebo and (2) 

the weakening of the path coefficients between the prefrontal cortex and the posterior 

Figure 6. Expected connection pattern of the 

regions activated by the RVIP sustained 

attention and working memory task.  The 

diagram is based on animal studies and human 

lesion studies. 



parietal region and between the posterior parietal and the hippocampus which might 

suggest difficulties with goal directed tasks and attention while on placebo (acute  

 

nicotine deprivation).  Interpretation of the meaning of changes in path coefficients (as in 

this example) is somewhat subjective and depends very much on the anatomical and 

lesion studies that were used to originally define the model as well as corresponding 

behavioral outcomes.  

Some general purpose software packages can be used for SEM, namely SAS, 

Statistica and R.  There are also special purpose packages for estimating the path 

coefficients from SEM, the best known is the package LISREL which allows the problem 

to be specified either as a set of simultaneous regression equations or as s set of 

correlation matrices. 

 

5. Conclusion 

Regression analysis with multiple comparisons corrections allows the determination 

of activated voxels which can then be grouped into ROI.  Principal components analysis 

is useful in extracting common temporal response features of an ROI, as well as 

A. Regions that decrease connectivity  Nicotine Placebo 
L. Post. Parietal to Hippocampus 0.15 0.06* 
Prefrontal  to L. Post. Parietal 0.36 0.24** 
Prefrontal  to R. Post. Parietal 0.36 0.23** 
   
B. Regions that increase connectivity   
L. Post. Parietal to Temporal 0.16 0.29** 
SMA  to Ant. Cingulate 0.12 0.25** 
R. Post. Parietal  to SMA 0.13 0.22* 
R. Post. Parietal to Visual 0.15 0.22* 

  * P < 0.05, ** P <0.01    

Table 1.  Path coefficients for selected connections in the RVIP task. The path coefficients were 

estimated separately for the nicotine patch and placebo patch conditions. Comparisons between 

conditions used a paired t-test. 



differentiating the temporal response of groups of commonly responding ROI.  It can 

also be used to examine differences in the temporal response of subgroups of subjects 

in the study.  Structural equation modeling is a technique that requires a priori 

knowledge of the connections and their direction between ROIs.  It is particularly useful 

in identifying changes in connectivity that result from different interventions or different 

classes of patients.  
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