TECHNICAL REPORT 55 MARCH 2008

Posterior Computation for Hierarchical Dirichlet Process Mixture Models: Application to Genetic Association Studies of Quantitative Traits in the the Presence of Population Strati cation

Nicholas M. Pajewski¹ and Purushottam W. Laud Division of Biostatistics Department of Population Health Medical College of Wisconsin de ned as follows.

 $_G \sim$

$$L(Y_{i}|_{i};) = \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - i)^{2}$$

$$i = \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - i)^{2}$$

$$i = \frac{1}{\sqrt{2}} (Y_{i}|_{i} - i)^{2}$$

$$L(W_{ii}; V_{ii}|_{i}) = \frac{2^{W_{ii}} e^{ii(2V_{ii} + W_{ii})}}{(1 + e^{ii})^{2}} \quad i = 1; ...; N \quad I = 1; ...; L$$

$$U_{ii} = \frac{1}{\sqrt{2}} (G_{i} - G_{i}) = 1; ...; N \quad I = 1; ...; L$$

$$G_{i} = G_{i} = 0 \quad (G_{i} - G_{i}) \quad (G_{i}) = 0 \quad (G_{i} - G_{i}) = 0$$

$$I|H \quad \stackrel{i:i:d}{\sim} H \quad I = 1; ...; L$$

$$H|_{i} = H_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i} - G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}) = 0 \quad (G_{i}) = 0$$

$$H|_{i} = 0 \quad (G_{i}$$

Note: Throughout the document, we use the following parametrization of gamma density, $X\sim\,$ Gamma (;),

$$f(x) \propto x^{-1}e^{-x}$$

In the above formulation, $_{II} = \text{logit} (_{II})$ where $_{II}$ presents the reference allele frequency for the i^{th} individual at the I^{th} SNP. $_{(0,0)}(\cdot)$ represents a Dirac delta function indicating a point mass at (0,0). In addition, N(x; ;) denotes a normal density with mean and precision and $MVN_p(x; M; T)$ represents a p-dimensional multivariate normal with mean vector M and precision matrix T. For each of the Dirichlet Processes, we have assumed gamma priors for the scalar mass parameters $_G$ and $_H$ following ?; alternatively they could be taken as to be xed constants. Figure 1 displays the model as a directed acyclic graph (DAG). 0*i*

Y_i

Step 1a: Perform the following proposal step for R iterations. For i = 1, 2, ..., N; propose a new distinct atom membership (s_i^*) for the i^{th} observation. The approach of **?** uses the conditional prior as a proposal distribution for s_i^* . Let $s_{(-i)}$ denote the set of all conguration indicators minus s_i , and let $n^{(-i)}$

Although the above log target density does not take a standard distributional form, the density is log-concave, and so a new value for $_{jl}^*$ can be sampled using Adaptive-Rejection sampling (?).

STEP 2: Update for /

In order to update each $_{I}$, we employed the Blocked Gibbs Sampler of **?**. The Blocked Gibbs Sampler is based on the stick-breaking representation of the Dirichlet Process, discussed in the work of **?**. Although the stick-breaking representation of the DP involves an in nite sum of discrete points, in actual implementation, the Blocked Gibbs Sampler utilizes a nite approximation, imposing a limit F_L to the number of distinct atoms amongst the $_I$. Denote this collection of distinct points as $* = \underset{1}{*} : \ldots : \underset{F_L}{*} \cdot \mathbf{?}$ show that even for large sample sizes, a limit of $F_L = 150$ provides a suitable approximation to the Dirichlet Process. Because of the point mass mixture construction in H_0 , without a loss of generality, we can include the additional distinct point $\underset{0}{*}$ to represent the cluster denoting no e ect (i.e. $_{I1} = 0$ and $_{I2} = 0$) with associated model weight \ldots . Similar to the con guration representation for $_{I1}$, de ne the pointers z_I where $z_I = j$ if and only if $_{I1} = \underset{1}{*}$ for $j = 0; 1; 2; \ldots; F_L$. Then de ne m_I as the number of z_I currently equal to j.

Step 2a: For j = 1/2; ..., F_L ; update $_j^*$. Note, because $_0^*$ represents the null e ect cluster, its value need not be updated. If $m_j = 0$, then $_j^* \sim H_0$. Else draw $_j^* \sim MVN_2$ (M^* ; T^*) where

$$\begin{array}{rcl} T^* & = & G_j' \, G_j \, + \, T \\ \mathcal{M}^* & = & (T^*)^{-1} & G_j' & Y - B_0 - X^{(-j)} \, + \, T \, \mathcal{M} \end{array}$$

Y denotes a $n \times 1$ column vector of the quantitative traits Y_i . Similarly, B_0 represents a $n \times 1$ column vector where the) i^{t} Televine a 1 column vector where the) i^{t} Televine a 1 column vector where the i^{t} Televine a 1 column vector i^{t} Televine a 1 column vector

Step 2b: For I = 1/2; ..., L; independently sample z_I where,

$$P(z_{l} = 0) \propto L(Y|s; {}^{*}_{0};)$$

$$P(z_{l} = j) \propto (1 -)p_{j}L Y|s; {}^{*}_{j}; \text{ for } j = 1;2; ...; F_{L}$$
where
$$2$$

$$L(Y|s; {}^{*}_{j};) \propto \exp 4 \frac{-}{2} \frac{\chi}{_{l=1}} Y_{l} - {}^{0}_{0}s_{l} - X_{ll} {}^{*}_{j} - \frac{\chi}{_{c\neq l}} (X_{cl} {}^{*}_{cc}) {}^{5}$$

Step 2c: Update and the stick-breaking weights (p_j) . Sample ~ Beta $(c_1 + m_0; d_1 + (L - m_0))$. Then for $j = 1; 2; ...; F_L$; set

$$p_1 = V_1 p_k = (1 - V_1)(1 - V_2)$$

STEP 3b: Update for H

- 1. Sample $x_H|_H \sim \text{Beta}(_H; L)$
- 2. Let _H equal

$$_{G} = \frac{_{3} + K_{H} - 1}{_{3} + K_{H} - 1 + L(_{3} - \log(X_{H}))}$$

3. Sample $_{G}|x_{G}$, $K_{G} \sim$

H Gamma (${3} + K_{H}$; $_{3} - \log(x_{H})$) + (1 - $_{G}$) Gamma ($_{3} + K_{H} - 1$; $_{3} - \log(x_{H})$)

STEP 4: Update error precision

Sample \sim Gamma(*; *) where

* =
$$\frac{N}{2}$$
 + 1
* = $1 + \frac{1}{2} X^{V}_{i=1}$ $Y_{i} - _{0s_{i}} - X_{i} X_{i} X_{i}$ $Y_{i} = \frac{1}{2} X_{i}$