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Abstract

The quantile residual lifetime analysis is often performed to evaluate the distri-

butions of remaining lifetimes for survival and competing risks data. The current

literature is limited to independent data. We propose a pseudo-value approach to

compare quantile residual lifetimes of multiple groups for dependent survival and com-

peting risks data. The pseudo-value approach is extended to dependent event times

and dependent censoring times. The empirical Type I errors and statistical power of

the proposed study are examined in a simulation study, which shows that the proposed

method controls Type I errors very well and has higher power than some existing

method. The proposed method is illustrated by a bone marrow transplant data set.
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1. INTRODUCTION

Residual life is the residual lifetime of a patient given that the patient survived at least to

time t. Statistical inference on residual life may provide patients and clinicians valuable

information on evaluating treatments. The quantile residual lifetime is often preferred when

the distribution of the residual lifetime is skewed (Ma and Wei 2012). The statistical liter-

ature on quantile residual lifetime includes Jung, Jeong and Bandos (2009) and Kim, Zhou

and Jeong (2012). Jung et al. (2009) proposed a time-speci�c log-linear regression model

and Kim et al. (2012) studied empirical likelihood inference to test parameters of interest.

However, they are restricted to independent survival data.

The cause-speci�c residual life distribution was proposed by Jeong and Fine (2009) for

the competing risks setting. The cause-speci�c residual life distribution is de�ned as the

residual cumulative incidence function conditional on event-free survival to a given time t

(Jeong and Fine 2009). A nonparametric test was developed for testing one sample and

two samples (Jeong and Fine 2013). As in residual lifetime analysis for survival data, this

is limited to independent data. Statistical inference for comparing multiple groups is also

desirable in practice.

The pseudo-value technique has been used for survival and competing risks data (Andersen,

Klein and Rosth�j 2003; Logan, Zhang and Klein 2011). Graw, Gerds and Schumacher

(2009) further studied the asymptotics of pseudo-value regression for independent data.

Ahn and Mendolia (2014) examined comparisons of the median survival distributions using

the pseudo-value approach. Relying on generalized estimating equations makes statistical

inference on dependent data feasible. Although Logan et al. (2011) studied the pseudo-value

technique for dependent event times, it was restricted to independent censoring times. A

further study allowing for dependent censoring times needs to be addressed.

We propose a pseudo-value-based method to test the equality of quantile residual lifetimes
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of multiple groups for dependent survival and competing risks data. We extend the result

of Logan et al. (2011) to dependent censoring in Section 2. In Section 3, we describe the

proposed test statistic based on pseudo-values and its asymptotic distribution. A simulation

study is performed in Section 4. A bone marrow transplant example is illustrated in Section

5. Finally, we have a brief conclusion in Section 6.

2. PSEUDO-VALUE APPROACH

In this section, we review the pseudo-value approach for competing risks and survival settings

and extend it to dependent events and dependent censoring times. First of all, we consider

the competing risks setting and de�ne some notations. We assume that there are m clusters

and each cluster has ‘ individuals. Let n = m � ‘ be the total sample size. Although the

cluster size is �xed at ‘, as in Spiekerman and Lin (1998) the clusters may have di�erent sizes

by de�ning censoring times as zero when observed times are missing. For simplicity, assume

that there are two causes of failure � 2 f1; 2g. Let Tij , Cij , �ij , and Z ij be the event time,

censoring time, cause of failure, and covariate vector of individual j in cluster i, respectively,

for i = 1; : : : ;m and j = 1; : : : ; ‘. Let T i = fTij ; j = 1; : : : ; ‘g;C i = fCij ; j = 1; : : : ; ‘g; � i =

f�ij ; j = 1; : : : ; ‘g; and Z i = fZ ij ; j = 1; : : : ; ‘g. Suppose that (T i ; � i ;C i ;Z i ) are independent

and identically distributed (iid). We assume that the Cij ’s do not depend on the Z ij ’s and

the Tij ’s are independent of the Cij ’s for i = 1; : : : ;m and j = 1; : : : ; ‘. Thus, while event

times and censoring times for the same individual are independent, the event times may be

correlated within the same cluster. Similarly, the censoring times may be correlated within

the same cluster. We further assume that the Cij ’s have a common distribution G although

censoring times may be correlated within a cluster. Let Xij = min(Tij ; Cij ) be the observed

time.

We consider the marginal cumulative incidence function for cause 1. Let F1(t) = P (T �

t; � = 1) and Nkij (t) = I(Tij � t)I(�ij = k)I(Tij � Cij ), where k = 1; 2. De�ne Nij (t) =

N1ij (t) + N2ij (t). We further de�ne a risk set indicator Yij (t) = Ift � Xij g and Y (t) =
P m

i =1

P `
j =1 Yij . Following Chen, Kramer, Greene and Rosenberg (2007), we de�ne the em-
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pirical cause-speci�c cumulative hazard functions as Ĥ1(t) =
Rt

0 dĤ1(u), where

dĤ1(t) =
mX

i =1

`X

j =1

dN1ij (t)

Y (t)
:

Then, the cumulative incidence estimate can be estimated by F̂1(t) =
Rt

0 Ŝ(u�)dĤ1(u),

where Ŝ(u�) is the Kaplan-Meier estimate of event-free survival, in which the patient has

not experienced either cause 1 or cause 2 (Logan et al. 2011). This estimate is still a consistent

estimate of F1(t) even for dependent competing risks events and dependent censoring times

(Zhou and Fine 2012).

A pseudo-value at time t of the jth individual in the ith cluster for F1(t) is de�ned by

P f
ij (t) = nF̂1(t) � (n � 1)F̂ � ij

1 (t) for i = 1; : : : ;m and j = 1; : : : ; ‘, where F̂ � ij
1 (t) is the

cumulative incidence estimate obtained by omitting the jth individual in the ith cluster.

Logan et al. (2011) studied marginal cumulative incidence and survival models for clustered

data using the pseudo-value approach. Assuming mutually independent censoring times,

they showed that i) P f
ij (t) is approximately independent of P f

kg(t) for i 6= k as n ! 1; and

ii) limn!1 E(P f
ij (t)jZ ij ) = F1(tjZ ij ). The pseudo-values can be used as a response variable

in a generalized estimating equation (GEE) setting as described in Andersen et al. (2003),

Logan et al. (2011), and Klein and Andersen (2005). Because only a single �xed time point

is considered in this paper, we illustrate the use of the GEE at a �xed time point t. To

model the marginal cumulative incidence function at time t, we consider g(F1(tjZ)) = �
0
Z.

Let � = F1(tjZ) = g� 1(�
0
Z), P f

i = (P f
i 1(t); : : : ; P f

i` (t)), and � i = (�i 1(t); : : : ; �i` (t)) for

i = 1; : : : ;m. Then, the GEE is de�ned as follows:

X

i

� @� i

@�

� 0

V � 1
i (P f

i � � i ) �
X

i

U i (� ) = 0;

where V i is a ‘� ‘ working correlation matrix for cluster i. Then,
p
m(�̂ � � ) converges in

distribution to N(0;



where

I (� ) =
X

i

� @� i

@�

� 0

V � 1
i

� @� i

@�

�
; dV arfU (�̂ )g =

X

i

U i (�̂ )U i (�̂ )
0
:

Therefore, dependent competing risks data are readily handled by considering within-cluster

correlation between individuals.

Next, we discuss extending this to the setting where the censoring times may also be

correlated within a cluster. The cumulative incidence estimate F̂1(t) can be rewritten as

F̂1(t) =
1

n

mX

i =1

`X

j =1

N1ij (t)

Ĝ(Xij )
;

where Ĝ(t) is the Kaplan-Meier estimate of the censoring survival distribution G(t) obtained

by treating censored observations as events (Scheike, Zhang and Gerds 2008). Let N c
ij (t) =

I(Cij � t) and Hc(t) be the cumulative hazard function by treating censored observations

as events. De�ne

�(t) = lim
m!1

1

m

mX

i =1

`X

j =1

I(Xij � t):

For dependent event times and dependent censoring times, Zhou and Fine (2012) showed

Ĝ(t) converges in probability to G(t) uniformly on t 2 [0; T ] and
p
mfĜ(t)�G(t)g converges

weakly to a tight Gaussian process with covariance function �c(s; t) = EfIc
i (s)Ic

i (t)g, where

Ic
i (t) =

`X

j =1

Z t

0

1

�(u)
dM c

ij (u);

and M c
ij (t) = N c

ij (t)�
Rt

0 I(Xij � u)dHc(u). As in Appendix, similarly to Logan et al. (2011),

we can show

P f
ij (t) =

N1ij (t)

G(Xij )
+

Z X ij

0

P (Tf � t; � = 1jTf � u)

G(u)
dM c

ij (u) +Op(m� 1=2); (1)

where Tf is event time of cause 1. Note that the �rst two terms are the same as those in

Equation (2) of Logan et al. (2011). Because censoring times are independent of fZ ij ; i =

1; : : : ;m; j = 1; : : : ; ‘g, limm!1 EfP f
ij (t)jZ ij g = F1(tjZ ij ). In addition, P f

i (t) = (P f
i 1(t); : : : ; P f

i` (t))T ’s

are asymptotically iid for i = 1; : : : ;m. The asymptotics of the GEE can be justi�ed simi-

larly to Theorem 2 of Graw et al. (2009). This extends the result of Logan et al. (2011) to

dependent censoring times.
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For the survival setting, let the survival function S(t) be event-free survival, in which

the patient has not experienced any causes. The pseudo-value for survival is de�ned as

P s
ij (t) = nŜ(t) � (n � 1)Ŝ � ij (t) for i = 1; : : : ;m and j = 1; : : : ; ‘, where Ŝ � ij (t) is the

Kaplan-Meier estimate obtained by omitting the jth individual in the ith cluster. The

consistency of the Kaplan-Meier estimate for dependent events and dependent censoring was

shown by Zhou and Fine (2012). Like the competing risks setting, we can show

P s
ij (t) =

Nij (t)

G(Xij )
+

Z X ij

0

P (Ts � tjTs � u)

G(u)
dM c

ij (u) +Op(m� 1=2); (2)

where Ts is event time of any cause. As in the competing risks setting, limm!1 EfP s
ij (t)jZ ij g =

S(tjZ ij ) and P s
i (t) = (P s

i 1(t); : : : ; P s
i` (t))T ’s are asymptotically iid, which extends the result

of Logan et al. (2011) for dependent censoring times. The GEE setting can be justi�ed as

shown in Graw et al. (2009).

3. METHOD

In this section, we propose pseudo-value-based methods for testing residual lifetime for com-

peting risks and survival settings and study properties of the proposed methods. Consider

the competing risks setting �rst. Let q� be the �th quantile of the cause 1 residual life distri-

bution given event-free survival to t. Jeong and Fine (2009) de�ned the residual cumulative

incidence function given event-free survival to time t for cause 1 as follows:

P (T � q� � t; � = 1jT > t) =
F1(q� + t)� F1(t)

S(t)
:

The �th quantile of the cause 1 residual lifetime q� given event-free survival to time t satis�es

F1(q� + t)� F1(t)

S(t)
= �:

Let A(q� ) = F1(q� + t) � F1(t) � �S(t) and Â(q� ) = F̂1(q� + t) � F̂1(t) � � Ŝ(t). Jeong and

Fine (2009) showed that A(q� ) = 0 has a unique root. In practice, q̂� is uniquely determined

by de�ning it as the smallest q at which fF̂1(q + t) � F̂1(t)g=Ŝ(t) crosses � (Jeong and

Fine 2009), where F̂1(t) and Ŝ(t) are the cumulative incidence estimate of cause 1 and the
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Kaplan-Meier estimate at time t, respectively. We assume that F1(t) is absolutely continuous

and f1(t) = dF1(t)=dt is positive on some neighborhood of q� + t. Jeong and Fine (2009)

showed the consistency of q̂� for independent data. Similar arguments can be used to show

the consistency of q̂� for dependent data as follows: Â(q� ) converges to A(q� ) due to the

consistency of Ŝ(t) and F̂1(t). Because of absolute continuity of F1(t) and positivity of f1(t)

on some neighborhood of q� + t, A(q� ) has a unique solution. Thus, q̂� is consistent given � .

Assume that there are � groups to compare. Under the null hypothesis, we have q1� =

� � � = q�� � q0� , where qi� is the �th quantile of the cause 1 residual life distribution given

event-free survival to t for group i, i = 1; : : : ; �. Due to the uniqueness of the solution for

A(q� ) = 0, this is equivalent to testing A(q1� ) = � � � = A(q�� ) � A(q0� ) = 0.

To compare A(�) values at q0� of � groups, we use the pseudo-value approach. Given q� ,

the pseudo-value for A(�) of individual j in cluster i is de�ned as Bij (q� ) = P̂ f
ij (q� + t) �

P̂ f
ij (t)� � P̂ s

ij (t) for i = 1; : : : ;m and j = 1; : : : ; ‘. Let q0� be the solution of A(x) = 0. Using

(1) and (2), we can show i)

EfBij (q0� )jZ ij g = F1(q0� + tjZ ij )� F1(tjZ ij )� �S(tjZ ij ) +Op(m� 1=2);

and ii) B i (q0� ) = (Bi 1(q0� ); : : : ; Bi` (q0� ))T ’s are asymptotically iid for i = 1; : : : ;m. The

GEE use can be justi�ed as in Theorem 2 of Graw et al. (2009). To apply the GEE, de�ne

an indicator variable Ik for group k such that for k = 1; : : : ; �,

Ik =

8
>><

>>:

1, if an individual belongs to the kth group;

0, otherwise:

Thus, � = (�1; : : : ; �� )T is to be estimated. To avoid an identi�ability issue, without loss

of generality, we �x �� at 0 and estimate � � � = (�1; : : : ; �� � 1)T . Let q̂0� be the solution of

Â(q0� ) = 0 based on the pooled data. Then, we de�ne pseudo-values as Bij (q̂0� ). Assuming

N1ij (x) is continuous atx00� t



A(q0� ) = 0 is equivalent to testing � � � = 0 given q0� . Due to the consistency of q̂0� , the test

statistic is given by

X2 = m�̂
0

� � �̂� 1
� � �

�̂ � � ;

where �̂ � � is found by numerically solving the GEE with Bij (q̂0� )’s and �̂� � �
is the corre-

sponding sandwich estimate of the covariance matrix of �̂ � � . Under the null hypothesis, X2

follows a chi-squared distribution with degrees of freedom � � 1.

For the survival setting, let �� be the � -quantile residual life function of group i at time

t. Then, it satis�es

P (T � t+ �� ) = (1� �)P (T � t) or S(t+ �� ) = (1� �)S(t):

De�ne C(�) = S(t + �� ) � (1 � �)S(t). Let �0� be the unique solution of C(�) = 0. Then,

�̂0� can be de�ned as the smallest �� at which Ŝ(t + �� ) � (1 � �)Ŝ(t) crosses zero, where

Ŝ(t) is the Kaplan-Meier estimate at time t based on the pooled data. The consistency

of �̂0� can be shown similarly to q̂0� . Assume that there are � groups to compare. Under

the null hypothesis, we have �1� = � � � = ��� � �0� , where �i� is the � -quantile residual life

function of group i at time t. Like the competing risks setting, this is equivalent to testing



Table 1: Empirical Type I error rates from comparing four groups for competing risks data







The corresponding survival functions are exp(��1x); exp(��2x
2); exp[3�3f1 � exp(x=3)g],

and 1=(1 + �4x), respectively. We compare four groups to examine empirical Type I error

rates at the signi�cance level � = 0:05. Each cluster is assumed to have eight individuals

with two individuals in each of the four groups being compared. We consider m = 100; 200,

and 400. The identity link function with an independence working correlation matrix is used

for the pseudo-value approach as in the competing risks setting. The exchangeable working

correlation matrix and the unstructured working correlation matrix were also examined, but

there was negligible di�erence from the result with the independence working correlation

matrix as in the competing risks setting.

Normal copulas are employed to generate correlated survival times and censoring times

within each cluster. The 8� 8 exchangeable correlation matrix C with correlation � = 0 and

0.5 is used for the normal copulas, i.e.,

C =

0

B
B
B
B
B
B
B
@

1 � : : : �

� 1 : : : �

...
...

. . .
...

� � : : : 1

1

C
C
C
C
C
C
C
A

:

Thus, � = 0 means that the survival and censoring times of the four groups are mutually

independent. On the other hand, the survival and censoring times within the same cluster

are correlated with � = 0:5. Using eight-dimensional random vectors on the unit cube

[0; 1]8 from normal copulas given �, the survival times are generated corresponding to their

marginal survival distributions. Independent of the survival times, the censoring times are

generated using normal copulas with the same � that is used for survival times. For the

detailed use of copulas, see Yan (2007).
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Table 3: Empirical Type I error rates when the survival distributions of the four groups are

equal.



Table 5: Comparison to Jeong and Fine (2013) for survival data with two groups

Empirical Type I error Empirical power

EE GG EG EE GG EG

� m JF PM JF PM JF PM JF PM JF PM JF PM

0 50 0.019 0.058 0.021 0.057 0.021 0.055 0.094 0.164 0.179 0.273 0.123 0.211

100 0.017 0.046 0.019 0.046 0.017 0.048 0.171 0.268 0.352 0.458 0.224 0.350

200 0.021 0.050 0.021 0.050 0.021 0.051 0.343 0.454 0.662 0.746 0.466 0.590

0.5 50 0.010 0.061 0.014 0.047 0.012 0.062 0.074 0.182 0.156 0.303 0.102 0.234

100 0.010 0.050 0.010 0.055 0.011 0.052 0.154 0.299 0.339 0.514 0.211 0.399

200 0.011 0.052 0.014 0.047 0.012 0.048 0.337 0.520 0.678 0.807 0.461 0.659

To examine empirical Type I errors at the signi�cance level � = 0:05, survival times are

generated from exponential distribution, Weibull distribution, Gompertz distribution, and

log-logistic distribution with �1 = 2=3� log 2; �2 = 4=15� log 2; �3 = (log 2)=3=fexp(2=3)�

exp(1=6)g, and �4 = 1, respectively. The corresponding censoring times are generated from

the same distribution that is used for survival times, which leads to 50% of censoring rate.

Given that a patient survived event free at least to time t = 0:5, the true residual survival

median �0� is 1.5 for each survival distribution, where � = 0:5. Survival probabilities at

t = 0:5 are expf�(log 2)=3g; expf�(log 2)=15g;

exp[(log 2)f1 � exp(6)g=fexp(2=3) � exp(1=6)g], and 2=3 for the exponential distribution,

Weibull distribution, Gompertz distribution, and log-logistic distribution, respectively. The



the other two groups have the Gompertz distributions. The proposed method controls Type I

error rates very well for independent and dependent survival data. As the number of clusters

increases, the empirical Type I error rates become closer to 0.05 in general.

To compare the proposed method to Jeong and Fine (2013), we consider two-group
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Figure 1: Estimated DFS and relapse rates for disease groups
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incidence (RCI) curves of relapse given disease-free survival to at least six months for the

three disease groups, where RCI(t) = fF1(t + 6) � F1(6)g=S(6). The dotted horizontal

line represents RCI = 0:25. The estimated 0.25th quantile cause-speci�c residual lifetimes

of AML, ALL, and CML were 49, 22, and 29 months, respectively. The p-value from the

proposed method was 0.314, which was not statistically signi�cant.

6. CONCLUSION

We have proposed the pseudo-value approach to compare residual lifetimes for survival and

competing risks data. The pseudo-value approach was extended to dependent event times
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APPENDIX

A. Proof of (1) and (2)

We prove (1) and (2) by following the arguments of Logan et al. (2011). We consider the

competing risks setting to show (1). The proof of (2) can be similarly done. We have

P f
ij (t) = nF̂1(t)([(n44TJ/F38 11.9552 Tf 7.2182.035 05014M.03TJ/F17 11051)-327(1F359(IJ/F17 11.9552 Tf 9.639 3.022 Td [(^)]TJ/F35 11.9552 Tf -2.69 -28.724 Td [203]TJ/F36 7.971.9552 Tf 81 -28.724 Td6,)-]TJ/F17 1]TJ -1.6651 -3.022 Td.66212d.665TJ/7.9701 Tf 7.578 -1.793 Td 26(477 2.931 11.9552 Tf 7.265 3.064 Td [(()]TJ/F35 11.9552 Tf 4.553 0 Td [(t)]TJ/F17 11.955 Tf 9.F350591,)-363).)]=52 Tf 81 -28.724 Td17.314[(1.947 11.95m52 Tf 4139 3.022 Td [-32891,),



The third term N1ij



Using the de�nition of M c
ij (t), we have

Z X ab

0

1

R(u)
dM c

ij (u) =

Z X ij

0

I(u � Xab)

R(u)
dM c

ij (u):

Thus, we have

X X

(a;b)6=( i;j )

N1ab(t)

G(Xab)

hZ X ab

0

1

R(u)
dM c

ij (u)
i

=

Z X ij

0

1

R(u)=n

1

n

X X

(a;b)6=( i;j )

N1ab(t)I(Xab � u)

G(Xab)
dM c

ij (u):

Consider

1

n

X X

(a;b)6=( i;j )

N1ab(t)I(Xab � u)

G(Xab)
: (4)

By the law of large numbers, (4) converges in probability to

E
nN1ab(t)I(Xab � u)

G(Xab)

o
:

We have

E
nN1ab(t)I(Xab � u)

G(Xab)

o
= E

h
E

n I(Tab � t)I(�ab = 1)I(Tab � Cab)I(Xab � u)

G(Xab)

�
�
�Tab

oi

= E
h
E

n I(Tab � t)I(�ab = 1)I(Tab � Cab)I(Tab � u)

G(Tab)

�
�
�Tab

oi

= E
hI(Tab � t)I(�ab = 1)I(Tab � u)

G(Tab)
E

n
I(Tab � Cab)

�
�
�Tab

oi

= EfI(Tab � t)I(�ab = 1)I(Tab � u)g

= P (u � Tf � t; � = 1):

Note that R(t)=n converges to P (Tf � u)P (C � u) = P (Tf � u)G(u). Then, the third term

is asymptotically equivalent to

Z X ij

0

P (Tf � t; � = 1jTf � u)

G(u)
dM c

ij (u);

which completes the proof of (1).

B. Proof of convergence of Bij (q̂0� )

Because Bij (q̂0� ) = P̂ f
ij (q̂� + t) � P̂ f

ij (t) � � P̂ s
ij (t), it is su�cient to show that P̂ f

ij (q̂� + t)

converges to P̂ f
ij (q� + t). Using (1), P f

ij (q̂� + t) is asymptotically equivalent to

N1ij (q̂� + t)

G(Xij )
+

Z X ij

0

P (Tf � q̂� + t; � = 1jTf � u)

G(u)
dM c

ij (u):
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Because N1ij (x) is continuous at x = q� + t with probability one. Therefore, noting that q̂�


